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Abstract

This paper investigates the applicability of nonlinear finite elements to the difficult task of parameter
identification of the structural behavior of passive hydraulic engine mounts. By using hyperelastic
constitutive relationships the incompressible nature of the rubber materials that make up the bulk of the
engine mount are accurately described and the results of such analysis are used directly in previously
developed lumped parameter models to fully describe the dynamic behavior of two distinct hydraulic engine
mounts.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This is the second of a two-part series that compares two distinctly different hydraulic engine
mount designs. The first part of this series described the linear and nonlinear mathematical
modeling techniques required to describe the frequency behavior of the two separate hydraulic
mounts considered. This section demonstrates the nonlinear finite element modeling techniques
required for component evaluation and parameter identification for the structural components of
the hydraulic engine mounts analyzed in the first paper.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
AB decoupler disk piston area
Ap equivalent piston area
Br equivalent rubber damping coefficient
B equivalent viscous damping coefficient
M effective fluid column mass
Kr upper structure stiffness
C volumetric compliance
K sum of inverse compliance
FT amplitude of transmitted force
Kdyn dynamic stiffness
f phase lag
X excitation amplitude
o excitation frequency
E nonlinear coefficient

D decoupler gap size
c strain energy density function
I1; I2; I3 invariants of the Cauchy deformation

tensor
l1; l2; l3principal stretch ratios

Subscripts

i inertia track
d decoupler
fd floating-decoupler
dd direct-decoupler
dyn dynamic
sys system
atm atmospheric
1,2,3 fluid control volume number
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Shangguan et al. have recently published literature on the finite element modeling of the
hydraulic engine mounts containing a floating decoupler [1,2]. In their papers, Shangguan
et al. investigate component behavior; however, they primarily focus on overall be-
havior and fluid–structure interaction. This paper further investigates the response
of the structural components of the hydraulic mount through the use of finite strain finite
elements. For clarification, the two mounts analyzed and introduced in the first paper are
illustrated in Figs. 1 and 2. The finite element modeling of the structural components allows
utilization of several finite element techniques such as contact analysis and large deformation shell
structural analysis.
Because the majority of the structures analyzed here within consist of nearly incompressible

rubber materials, hyperelastic models are required to describe their behavior. There exist many
constitutive relationships designed specifically to deal with the large deformations and
incompressible behavior of rubber and rubber-like materials. The majority of these relationships
can be classified by three of the most common models such as the Mooney–Rivlin models,
Ogden’s model, and the Arruda and Boyce model [3]. All of these models rely on an expression of
the strain energy density in terms of a series; therefore, the primary difficulty is not only in
choosing the appropriate model, but also in finding an acceptable point to truncate the series
expansion [4]. Fortunately most commercially available finite element codes have these
relationships defined in various levels of truncation. For example many codes use 2, 3, 5, and 9
term expansions of the Mooney–Rivlin model [5]. This is not to say other models do not exist,
several models have been introduced in efforts to better describe strain hardening effects at
large strain values and others to improve compressive behaviors. Amin et al. provide a thorough
description of various hyperelastic models [6]. Yet another difficulty is encountered
when attempting to describe hyperelastic material properties and that is the description of
material constants for the given model. Again this issue is often overcome in commercial codes via



ARTICLE IN PRESS

Fig. 1. Direct-decoupler hydraulic mount.
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a least-squares estimation process assuming that experimental stress–strain values are available
for several loading configurations [1,2].
This paper is divided into three basic components. First, the finite element model and necessary

constitutive relationships are introduced. Second the boundary conditions are specified and the
results analyzed, and third the frequency response equations introduced in the first paper are
utilized to directly compare the behavior of the two mounts.
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Fig. 2. Floating-decoupler hydraulic mount.

J. Christopherson, G.N. Jazar / Journal of Sound and Vibration 290 (2006) 1071–10901074
2. Component identification

The finite element model for the hydraulic engine mount centers around being able to describe
the behavior of the rubber components of the hydraulic engine mount; therefore, the constitutive
relationship becomes important. This analysis relies on the three term Mooney–Rivlin model to
describe the rubber behavior.

cðI1; I2Þ ¼ c10ðI1 � 3Þ þ c01ðI2 � 3Þ þ c11ðI1 � 3ÞðI2 � 3Þ, (1)

where

I1 ¼ l21 þ l22 þ l23,

I2 ¼ l21l
2
2 þ l22l

2
3 þ l23l

2
1.
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Eq. (1) represents the Mooney–Rivlin model for incompressible hyperelastic materials
in terms of strain energy per unit undeformed volume. To determine the constants
(c10, c01, and c11) the model in Eq. (1) is applied and compared to experimentally
obtained stress–strain data (uniaxial data is illustrated in Fig. 3) by means of a least-squares
procedure [2,7,8]. Table 1 illustrates the constants obtained by applying the said methods (see also
Table 2).
As shown in Fig. 3, the three-term Mooney–Rivlin model provides an exceptionally accurate fit

to the experimental data beyond providing sufficient range for this analysis.
Fig. 3. Uniaxial stress–strain relationship for rubber material.

Table 1

Mooney–Rivlin model constants

Parameter Value Unit

c10 4.838E�1 MPa

c01 �9.456E�2 MPa

c11 1.235E�2 MPa

Table 2

Linear elastic material properties

Material Young’s modulus Poisson’s ratio

Steel 207GPa 0.3

Aluminum 71GPa 0.33
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3. Discretized models

3.1. Element description

The nature of the problem and the fact that the models being considered here consist of
multiple materials in contact with one another emphasizes the importance of proper element
selection. Much of the volume of the bodies under investigation is made from nearly
incompressible rubber making hyperelastic constitutive models a necessity. However, many
elements do not tolerate large deformations typically associated with hyperelastic behavior. This
analysis utilized a quadratic displacement behavior element with a mixed u-P (displacement-
pressure) formulation to enforce the incompressibility constraint of the material [5]. In many
instances the rubber was in contact or bonded to linear-elastic-isotropic materials such as
aluminum and steel. Element selection in these metallic domains was not of great concern, as
excessive deformation in these regions is not expected; therefore, these domains utilized a
quadratic element to ensure mesh continuity with the hyperelastic domains.
This analysis also makes use of shell elements to describe thin rubber geometries intended to

exhibit large deformations. Shell elements are utilized because the geometry in question is of
complex nature; however, the thickness is constant throughout the geometry. By using the shell
element a higher quality mesh is obtained. With this said shell elements do have many limitations
and can easily induce large errors due to spurious modes such as shear locking and the hourglass
mode [9]. The element used here alters the transverse shape functions to eliminate the effect of
shear locking [5]. Additional spurious modes are eliminated on the element level, and for a full
description the reader is referred to Ref. [5].

3.2. Direct-decoupler mount

Fig. 4 illustrates the meshed geometry of the upper structure of the direct-decoupler mount.
The model takes into account the axial symmetry of the component thereby simplifying the
analysis of this component. The model consists of three distinct material domains defined by the
main rubber component which acts as the main spring system of the hydraulic mount and gives
the hydraulic mount the ability to support the engine. Second is the steel ring which encompasses
the rubber component and provides rigidity to the rubber structure. Third is the cast aluminum
domain that provides a means to connect the engine and engine mount. These differing material
domains are considered perfectly bonded to one another with one exception between the rubber
structure and aluminum structure (see Fig. 4). At this boundary a contact condition was specified
to prevent the aluminum structure from penetrating the rubber structure as the mount deforms.
The contact conditions were defined as an asymmetric contact pair utilizing a pure-penalty
approach [5].
Regardless of the domain, the element used was an eight node quadrilateral element with an

edge length not allowed to exceed 0.75mm. The small element edge length allowed the use of the
asymmetric contact pair model which improves computational efficiency as compared to a
symmetric contact pair model [5]. In addition, the small element size was more tolerant than
larger-sized elements of large structural deformations of the rubber domain of the mount thereby
easing the solution and convergence processes.
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Fig. 5. Lower chamber finite element mesh (direct-decoupler mount).

Fig. 4. Upper chamber finite element mesh (direct-decoupler mount).

J. Christopherson, G.N. Jazar / Journal of Sound and Vibration 290 (2006) 1071–1090 1077
Fig. 5 illustrates the meshed geometry of the lower compliance of the direct-decoupler mount.
Again, as with the upper structure, axial symmetry was exploited and an eight node quadrilateral
element was used. In addition, the element edge length was not allowed to exceed 0.75mm.
Fig. 6 illustrates the meshed geometry of the middle compliance of the direct-decoupler mount.

Here axial symmetry could not be exploited because of the geometry of the bottom of the
compliant (see Fig. 7). The meshed geometry utilizes a 20 node hexahedral element with element
edge size not allowed to exceed 2.5mm in the aluminum body and 1mm in the rubber domain.
The model contains two distinct material domains; however, the interface between said domains is
treated differently from the material interfaces in the upper structure. The interface between the
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Fig. 6. Middle chamber finite element mesh (direct-decoupler mount).

Fig. 7. Geometry of the lower surface of the middle compliance (direct-decoupler mount).
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rubber and aluminum components in this model were modeled by a symmetric contact
pair utilizing a pure-penalty approach. The symmetric contact was utilized as it calculates
the contact condition at more points across the contact area and allows for less overlap or
penetration between the contacting bodies than the asymmetric contact utilized in the upper
structure analysis [5].

3.3. Floating-decoupler mount

Fig. 8 illustrates the meshed geometry of the upper structure of the floating-decoupler mount.
As with the upper structure model from the direct-decoupler mount, the model of floating-
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Fig. 8. Upper and lower chamber finite element mesh (floating-decoupler mount).
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decoupler upper structure consists of three distinct material domains (again aluminum, rubber
and steel serving the same functions as previously discussed). The material interfaces were
assumed perfectly bonded to one another. This model allowed the use of symmetry conditions on
two orthogonal planes thereby allowing analysis of only one quarter of the structure. To simplify
the discretization process, the metallic domains were meshed using a 10 node tetrahedral element
that was deemed suitable noting the relatively small strains incurred in these domains as compared
to the rubber domain. The rubber domain was meshed using a 20 node hexahedral element with
an edge size not allowed to exceed 2mm to better accommodate the large strains inherent in this
domain. The transition region between the dissimilar meshes was meshed using a 13 node pyramid
element within the metallic domains. The tension pin was not included in the model as a means to
simplify the analysis as it was assumed to only provide support to large tensile-load-induced
deformations.
Fig. 8 illustrates the meshed geometry of the lower compliance from the floating-decoupler

mount. Because this domain was constant in thickness throughout the model was discretized
along its mid-plane using four node shell elements with edge length not exceeding 1mm. The shell
element uses the Mindlin–Reissner formulation and an altered shape functions to help avoid shear
locking-type phenomenon inherent in shell elements [3,5].
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4. Boundary conditions

4.1. Direct-decoupler mount

Fig. 9 illustrates the boundary conditions of the finite element model for the upper structure
from the direct-decoupler mount. For the case where the load–deflection characterizes, a pressure
was applied to the upper surface of the aluminum structure as shown in Fig. 9. In addition, the
mount was fixed from motion at the location where it mates with the remainder of the mount.
Thirdly, the mount was constrained from any possible axial motion by providing such constraints
along the axis of symmetry. To analyze the mount for volumetric compliance the pressure applied
on the upper surface was removed and a pressure was placed across the inner surface as shown in
Fig. 9 to simulate the pressure induced by the fluid.
Fig. 10 illustrates the boundary conditions for the lower chamber from the direct-decoupler

mount. As with the upper structure model this model fixes all displacement degrees of freedom
associated with the surfaces that contact the remainder of the engine mount. Load is applied as an
evenly distributed pressure across the internal surface of the geometry to simulate the pressure
applied by the fluid. Along the axis of symmetry radial displacement constraints are also instituted
to ensure no inappropriate deformations.
Fig. 11 illustrates a cross section of the middle chamber from the direct-decoupler mount to better

illustrate the boundary conditions. As with previous models the interface between the middle chamber
and the remainder of the mount was fixed in all displacement degrees of freedom. In addition, an
evenly distributed pressure was applied to the inner surfaces of the middle chamber to simulate the
fluid induced pressure. Also, a displacement constraint in all degrees of freedom was applied to the
upper surface of the aluminum structure in the interior of the middle chamber as to simulate a
retaining clip used in the actual mount (not modeled). Symmetry displacement conditions were also
applied to the two planes of symmetry for this model (see Fig. 6).
Fig. 9. Upper chamber boundary conditions (direct-decoupler mount).
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Fig. 11. Middle compliance boundary conditions (direct-decoupler mount) (cross section shown for better illustration).

Fig. 10. Lower compliance boundary conditions (direct-decoupler mount).
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4.2. Floating-decoupler mount

Fig. 12 illustrates the boundary conditions enforced upon the upper structure of the floating-
decoupler mount. Because of the geometry the structure was quartered and symmetry
displacement conditions were applied to each plane of symmetry. To ascertain the load–deflection
behavior of the structure a pressure load was applied to the upper surface of the aluminum
structure of the mount. In addition, at locations where the upper structure joins to the remainder
of the mount displacement constraints were assigned in all degrees of freedom. For analysis of the
volumetric compliance, a pressure was applied in an even manner across all surfaces exposed
directly to fluid when the mount is in an assembled configuration (this pressure was not applied
when analyzing the load–deflection behavior).
Fig. 13 illustrates the boundary conditions applied to the lower compliance of the floating-

decoupler mount. Here, symmetry displacement and rotation constraints were instituted along the
plane of symmetry. As in previous models the portions of the geometry that joined the remainder
of the mount were fixed from motion in all degrees of freedom and fluid pressure was simulated by
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Fig. 13. Lower compliance boundary conditions (floating-decoupler mount).

Fig. 12. Upper chamber boundary conditions (floating-decoupler mount).
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applying an evenly distributed pressure across all surfaces directly exposed to fluid while the
mount is in an assembled configuration.
5. Parameter identification

5.1. Direct-decoupler mount

Fig. 14 illustrates the load–deflection relationship obtained from the finite element model
of the upper structure of the direct-decoupler mount. In addition, a simple experiment was
run to verify the finite element model with the results illustrated as a comparison in Fig. 14.
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Fig. 14. Force-deflection relationship (direct-decoupler mount).

Fig. 15. Upper chamber volume–pressure relationship (direct-decoupler mount).
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Because the load–deflection relationship is approximately linear an equivalent stiffness value may
be defined as the mean slope of the load–deflection curve. Experimental results indicate a
stiffness value of 230.9N/mm whereas finite element results indicate a stiffness value of
235.4N/mm (�1.9% difference). Because of the excellent agreement between the finite element
model and experiment the finite element models are considered sufficiently accurate for this
investigation.
Fig. 15 illustrates the finite element results calculating the change in volume enclosed by the

structure as compared to the applied pressure. In order to calculate the volume at a specific load
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Fig. 16. Lower chamber volume–pressure relationship (direct-decoupler mount).
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step a trapezoidal numerical integration routine was used to approximate the volume integral. The
slope of the line in Fig. 15 yields the volumetric compliance of the upper structure. Utilizing the
mean slope of the line again noting the lines approximate linearity yields a compliance value of
5.70E�11m5/N.
Fig. 16 illustrates the enclosed volume as compared to applied pressure relationship for the

lower compliance of the direct-decoupler mount. Notice that this curve is highly nonlinear;
therefore, linearization about an operating point is required, and allowing the operating
point to exist beyond 5 kPa yields a volumetric compliance of 2.624E�9m5/N. Utilizing an
operating point above 5 kPa is acceptable noting that the static mount pressure is higher than said
value.
Fig. 17 illustrates the volume–pressure relationship obtained from the finite element model of

the middle chamber of the direct-decoupler mount. Utilizing the slope of the curve gives a mean
volumetric compliance of 2.923E�11m5/N.
5.2. Floating-decoupler mount

Fig. 18 illustrates the load–deflection relationship obtained for the upper structure of the
floating-decoupler mount by the finite element model and experimentally. The finite element
model yields an equivalent stiffness value of 558.28N/mm whereas the experiment yields an
equivalent stiffness value of 531.06N/mm, a 4.8% difference illustrates the effectiveness of the
finite element model.
Fig. 19 illustrates the volume–pressure relationship for the upper-structure of the floating-

decoupler mount. Noting the approximate linearity of the relationship illustrated in Fig. 19 the
mean slope of the curve yields a volumetric compliance of 5.118E�11m5/N.
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Fig. 18. Force-deflection relationship (floating-decoupler mount).

Fig. 17. Middle chamber volume–pressure relationship (direct-decoupler mount).
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Fig. 20 illustrates the volume–pressure relationship from the lower chamber of the floating-
decoupler mount. Assuming an operating pressure above 10 kPa yields an average linearized
compliance value of 2.85E�9m5/N.
Table 3 illustrates the parameter values for the two hydraulic mounts analyzed as

calculated from the finite element models and direct measurement from the mounts.
Adiguna et al. describe methods to obtain the fluid damping and equivalent mass
properties for the fluid passages, and this analysis uses the capillary tube formula discussed
there within [10].
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Fig. 19. Upper chamber volume–pressure relationship (floating-decoupler mount).

Fig. 20. Lower chamber volume–pressure relationship (floating-decoupler mount).
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6. Frequency responses

From the first paper the nonlinear equations of motion for the floating-decoupler mount and
direct-decoupler mount are, respectively

Md 0

0 Mi

" #
€xd

€xi

( )
þ

Bd 0

0 Bi

" #
_xd

_xi

( )
þ

A2
dK AdAiK

AdAiK A2
i K

" #
xd

xi

( )
þ F fd

1

0

� �
¼

Ap

C1

Ad

Ai

( )
x,

(2)



ARTICLE IN PRESS

Table 4

Linear model natural frequency comparison

f1 (Hz) f2 (Hz)

Floating-decoupler 85.48 0

Direct-decoupler 82.96 23.95

Table 3

Values for hydraulic mount

Symbol Floating-decoupler Direct-decoupler Unit

Ai 4.297E�05 6.668E�05 m2

Ad 5.303E�05 8.107E�05 m2

Ap 5.345E�03 3.663E�03 m2

AB — 2.027E�03 m2

Bi 2.409E�02 2.852E�03 Ns/m

Bd 1.031E�04 2.140E�01 Ns/m

Br 0.500E+03 0.500E+03 Ns/m

C1 5.118E�11 5.700E�11 m5/N

C2 2.850E�09 2.923E�11 m5/N

C3 — 2.624E�09 m5/N

K 1.989E+10 5.214E+10 N/m5

Kr 5.583E+05 2.354E+05 N/m

Mi 9.887E�03 1.773E�03 kg

Md 5.220E�04 1.643E�03 kg

E 0.5 0.5 —

D 5.000E�04 4.500E�03 m

X 1.0E�3 1.0E�3 m
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Using the linearized version, assuming an open decoupler, of the equations of motion
illustrated in (2) and (3) yields the natural frequency values listed in Table 4.
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Note that the floating-decoupler mount exhibits a zero natural frequency for one degree of
freedom. This corresponds to the shortcircuiting of the inertia track from the system noting the
decoupler is never allowed to close in the linear model, and therefore provides the most efficient
means of pressure equalization across the two fluid chambers. The direct-decoupler mount does
not exhibit such behavior noting that its inertia track is forced into service because the decoupler
and inertia track are in series.
The frequency response functions obtained in the first paper by utilization of the method of

averaging are expressed for convenience here in Eqs. (4)–(7).

Kdyn ¼
1

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X KrG1 þ BroG2 þ A2

pp2
1

� �r
, (4)

fsys ¼ arctan
BrXoþ App1 sinðf1Þ

KrX þ App1 cosðf1Þ

� �
, (5)

Kdyn ¼
1

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBrXoÞ2 � 2BrXoS1 þ ðKrX Þ

2
� 2KrXS2 � A2

BS3 þ 2ABApp1S4 þ ðApp1Þ
2

q
, (6)

fsys ¼ arctan
BrXo� S1

KrX � S2

� �
. (7)

Eqs. (4) and (5) refer to the floating-decoupler mount whereas Eqs. (6) and (7) refer to the
direct-decoupler mount. Both systems of equations are fully defined in the first paper and
presented here solely for reference.
Figs. 21 and 22 illustrate the results of Eqs. (4)–(7) using the mount parameters determined via

the finite element models. Fig. 21 illustrates a comparison between the two mounts dynamic
stiffness responses normalized by their respective static upper structure stiffness values (Kr). As is
readily apparent by the dynamic stiffness curves and phase lag curves the direct-decoupler mount
Fig. 21. Dynamic stiffness comparison plot.



ARTICLE IN PRESS

Fig. 22. System phase lag comparison plot.
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exhibits characteristics of over damping as compared to the floating-decoupler mount and is
incapable of providing the appropriate switching mechanism to alleviate the high damping at
increased frequencies. However, the floating-decoupler mount appears to provide sufficient
damping through primary resonance and then appears to provide a substantial decrease in
damping as witnessed in the frequency response curves in Figs. 21 and 22. More specifically, the
rate of increase of the frequency response function describing the floating-decoupler mount is
significantly less than that of the direct-decoupler mount indicating the floating-decoupler mount
exhibits a significantly lower damping coefficient than that of the direct-decoupler. In addition,
the phase lag of the floating-decoupler mount is substantially less than that of the direct-decoupler
mount thereby indicating a significant difference in the overall system damping.
7. Conclusions

It has been illustrated that finite element analysis provides an accurate and highly effective
method in parameter identification to aid in the design process of such devices. In addition, the
accuracy of the finite element analysis as compared to experiment for describing rubber material
incompressible behavior characteristics has been verified on a practical example. Along with using
the finite element models, the lumped parameter modeling introduced in the first paper and
extended here is appropriate and effective for describing the nonlinear behavior of hydraulic
mounts in a frequency domain thereby presenting an attractive, efficient and effective tool for
design and analysis of nonlinear suspensions. In addition to illustrating that nonlinear finite
elements are effective as a design tool for hydraulic mounts the superiority of the floating-
decoupler mount design in isolating vibration and providing a means of frequency dependent
damping has been illustrated noting that for the system to exhibit a frequency dependent damping
characteristic the switching mechanism must be decoupled from the actual input excitation of the
system and allowed to react to the behavior of the system as a whole.
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